Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Environ Monit Assess ; 194(11): 823, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2041295

ABSTRACT

Leather industry is the second largest export-earning sector of Pakistan. However, because of poor waste management, this industry has been continuously polluting the environment. In this paper, the impact of tanneries on the groundwater quality of Kasur city (i.e., the second largest leather producing city) is examined. The study is conducted in the following three phases: (I) water samples collection, (II) determination of physio-chemical properties, and (III) application of data mining techniques. In phase I, groundwater samples were collected from various sources such as hand pumps, motor pumps, and tube wells. In phase II, several physio-chemical properties such as (i) total dissolved solids (TDS), (ii) pH, (iii) turbidity, (iv) electrical conductivity (EC), (v) total hardness (TH), (vi) total alkalinity (TA), (vii) nitrates, (viii) chromium, (ix) fluoride, and (x) chloride were estimated. The estimated values of all these foregoing parameters are then compared with the Punjab Environmental Quality Standards for Drinking Water (PEQSDW). In phase III, principle component analysis and cluster analysis of the estimated parameters were performed to elucidate the relation between various parameters and to highlight the highly vulnerable sites, respectively. The results exhibit that most of the sampling collections sites are at the threshold of losing quality water. Moreover, it is also found that Mangal Mandi carries the worst groundwater quality among all sampling locations. Overall, it is concluded that serious attention is due from the water and wastewater authorities to further investigate and monitor the groundwater quality of Kasur before the country strikes with another pandemic after COVID-19.


Subject(s)
COVID-19 , Drinking Water , Groundwater , Water Pollutants, Chemical , Chlorides/analysis , Chromium/analysis , Drinking Water/analysis , Environmental Monitoring/methods , Fluorides/analysis , Groundwater/chemistry , Humans , Nitrates/analysis , Pakistan , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Quality
2.
PLoS One ; 17(1): e0259207, 2022.
Article in English | MEDLINE | ID: covidwho-1648363

ABSTRACT

COVID-19 greatly challenges the human health sector, and has resulted in a large amount of medical waste that poses various potential threats to the environment. In this study, we compiled relevant data released by official agencies and the media, and conducted data supplementation based on earlier studies to calculate the net value of medical waste produced in the Hubei Province due to COVID-19 with the help of a neural network model. Next, we reviewed the data related to the environmental impact of medical waste per unit and designed four scenarios to estimate the environmental impact of new medical waste generated during the pandemic. The results showed that a medical waste generation rate of 0.5 kg/bed/day due to COVID-19 resulted in a net increase of medical waste volume by about 3366.99 tons in the Hubei Province. In the four scenario assumptions, i.e., if the medical waste resulting from COVID-19 is completely incinerated, it will have a large impact on the air quality. If it is disposed by distillation sterilization, it will produce a large amount of wastewater and waste residue. Based on the results of the study, we propose three policy recommendations: strict control of medical wastewater discharge, reduction and transformation of the emitted acidic gases, and attention to the emission of metallic nickel in exhaust gas and chloride in soil. These policy recommendations provide a scientific basis for controlling medical waste pollution.


Subject(s)
Air Pollution/prevention & control , COVID-19/epidemiology , Environmental Pollution/prevention & control , Medical Waste/analysis , Neural Networks, Computer , Waste Management/methods , Wastewater/analysis , Air Pollution/analysis , COVID-19/economics , China/epidemiology , Chlorides/analysis , Environment , Environmental Pollution/analysis , Gases/analysis , Humans , Incineration/methods , SARS-CoV-2/pathogenicity , Waste Management/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL